
 
US Department 
of Transportation 
 
Federal Railroad 
Administration 
 

 
Evaluation of Semi-Empirical Analyses 
for Tank Car Puncture Velocity, Part II: 
Correlations with Engineering Analyses 

 
Office of Research and 
Development 
Washington, DC 20590 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
D.Y. Jeong 
Y.H. Tang 
A.B. Perlman 
 
 
 
 
 
 
 
U.S. Department of Transportation 
Research and Special Programs Administration 
Volpe National Transportation Systems Center 
Cambridge, Massachusetts 02142-1093 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DOT/FRA/ORD-01/21.II 

 
Final Report 

November 2001 
 

 
This document is available to the public 
through the National Technical Information 
Service, Springfield, Virginia 22161 
This document is also available on the 
FRA web site at www.fra.dot.gov 



Notice

This document is disseminated under the sponsorship
of the Department of Transportation in the interest of
information exchange.  The United States Government
assumes no liability for its contents or use thereof.

Notice

The United States Government does not endorse
products or manufacturers. Trade or manufacturers’
names appear herein solely because they are
considered essential to the objective of this report.



 
REPORT DOCUMENTATION PAGE 

 
 Form Approved 
 OMB No. 0704-0188  

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, 
and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188), Washington, DC 20503. 
 
1. AGENCY USE ONLY (Leave blank) 
 

 
2. REPORT DATE 

November 2001 

 
3. REPORT TYPE & DATES COVERED 

Final Report –August 1998 
 
4. TITLE AND SUBTITLE 
Evaluation of Semi-Empirical Analyses for Railroad Tank Car Puncture Velocity, Part II: 
Correlations with Engineering Analyses  
 
6. AUTHOR(S) 
D.Y. Jeong, Y.H. Tang, and A.B. Perlman 

 
5. FUNDING NUMBERS 
 

R-9002/RR-928 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Department of Transportation 
Research and Special Programs Administration 
Volpe National Transportation Systems Center 
Cambridge, MA 02142-1093 

 
8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

DOT-VNTSC-FRA-99-10 
 

 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Federal Railroad Administration 
Office of Research and Development  
1120 Vermont Ave., NW MS20 
Washington, D.C. 20590 

 
10.  SPONSORING OR 
   MONITORING AGENCY 
   REPORT NUMBER 

DOT/FRA/ORD-01/21.II 

 
11. SUPPLEMENTARY NOTES  
 
 
12a. DISTRIBUTION/AVAILABILITY 
This document is available to the U.S. public through the National 
technical Information Service, Springfield, VA 22161.  This document is 
also available on the FRA web site at www.fra.dot.gov. 

 
12b. DISTRIBUTION CODE 
 

 
13. ABSTRACT (Maximum 200 words) 
This report is the second in a series focusing on methods to determine the puncture velocity of railroad tank car shells.  In this 
context, puncture velocity refers to the impact velocity at which a coupler will completely pierce the shell and puncture the tank. 
In the first report in this series, a set of semi-empirical equations was evaluated by comparing calculated puncture velocities with data 
from tank car impact tests.  These equations were originally developed by the RPI-AAR Tank Car Safety Committee and later 
modified by the industry to account for head shield protection and jacket insulation.  The semi-empirical equations generally 
produced reasonable and conservative estimates of puncture velocity when compared with the experimental data.  However, 
differences between the calculated and observed results become more widespread when the tank is pressurized or when shield 
protection is present.  Moreover, alternative methods to determine puncture velocity may be observed by the industry to avoid over-
design. 
In this report, methods to predict puncture velocity based only on engineering mechanics principles (i.e., no empiricism) are 
developed and described.  Results from the semi-empirical approach are compared with results from the engineering methods.  These 
methods rely on both analytical and computational tools to examine the structural behavior of tanks with ellipsoidal shapes.  These 
tools include finite element and dynamic lumped mass models. 

 
15. NUMBER OF PAGES 

68 

 
14. SUBJECT TERMS 

tank car coupler impact, finite-element analysis, indentation, puncture velocity, tank car head 
shield protection  

16. PRICE CODE 
 
17. SECURITY 

CLASSIFICATION OF 
REPORT 

Unclassified 

 
18. SECURITY CLASSIFICATION 

OF THIS PAGE 
Unclassified 

 
19. SECURITY CLASSIFICATION 

OF ABSTRACT 
Unclassified 

 
20. LIMITATION OF ABSTRACT 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
 Prescribed by ANSI Std. 239-18 
 298-102 



 iii 

PREFACE 
 
The work described in this report was performed by the John A. Volpe National Transportation 
Systems Center (Volpe Center) as part of a research program to develop technical information 
and criteria for evaluating the structural integrity of railroad tank cars.  This research is being 
conducted in support of the Equipment and Operating Practices Research Division of the Office 
of Research and Development of the Federal Railroad Administration (FRA).  The FRA program 
manager for tank car safety research is Mr. Jose Pẽna. 
 
This report is the second in a series focusing on the puncture resistance of tank car shells from 
the impact of couplers from other cars, broken rails, and other objects.  The first report in this 
series described a semi-empirical approach to calculate the puncture velocity, defined as the im-
pact velocity that will cause full penetration of the impacting object into the tank. The semi-
empirical approach was evaluated by comparing calculated puncture velocities with data ob-
tained from impact tests conducted on full-scale and actual tank cars. The semi-empirical 
approach generally produced reasonable but conservative estimates of puncture velocity.  Alter-
native methods may be needed by the industry to avoid over-design. 
 
In this report, methods based on engineering mechanics principles (i.e., no empiricism) are de-
scribed to determine the puncture velocity of tank car shells.  Both analytical and computational 
methods are used in the engineering methodologies.  The analytical model examines the crushing 
behavior of a rigid-plastic ellipsoidal shell.  Computational methods are carried out with finite 
element models.  Dynamic lumped-mass models are also developed to relate applied force to im-
pact velocity. 
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EXECUTIVE SUMMARY 
 
This report describes engineering methods to determine the puncture velocity of tank cars.  In 
this context, the puncture velocity is defined as the velocity at which puncture may be expected 
to occur. 
 
Prior to the work described in this report, puncture velocity of railroad tank cars has been calcu-
lated by the industry with the aid of semi-empirical equations.  These semi-empirical equations 
were originally developed by the Railway Progress Institute - Association of American Railroads 
(RPI-AAR) Tank Car Safety Research and Test Project, and were later modified by the industry 
to include the effect of head shield protection and jacket insulation. The semi-empirical approach 
to calculate puncture velocity was evaluated in a previous technical report by comparing calcula-
tions with experimental data from various sources. 
 
In this report, methods are developed to determine puncture velocity based on engineering me-
chanics principles.  That is, no empiricism has been incorporated into the analyses. These 
analyses include a rigid-plastic ellipsoidal shell model, finite element models, and dynamic 
lumped-mass modeling. 
 
The rigid-plastic ellipsoidal shell model and the finite element analyses indicate that the magni-
tude of the indentation due to impact depends strongly on the shape and depth of the tank car 
head (i.e., aspect ratio of the ellipsoid).  Sensitivity studies also reveal that load-deflection behav-
ior of the shell is strongly affected by material properties such as yield strength.  Shell thickness, 
internal pressure, and off-center loading were found to have a moderate effect on indentation.  
Tank diameter had a weak influence on the load versus deflection behavior. 
 
Results from the engineering models are in good agreement with those from the semi-empirical 
equations for six cases examining the puncture velocity of non-pressurized, bare head tanks.  The 
finite element calculations were less than the semi-empirical results in all cases with 2 percent 
outage, while the semi-empirical results were less than the finite element (FE) results in all cases 
with 100 percent outage.  Further examination of the tests data suggests that the presence of liq-
uid inside the tank (outage) has a stiffening effect on indentation.   
 
Both the effect of liquid inside the tank and the effect of tank car head protection (such as a head 
shield or jacket) should be addressed in future work. 
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1. INTRODUCTION 
 
Each year the nation’s railroad tank cars make about one million shipments with hazardous ma-
terials.  These materials can be poisonous, corrosive, flammable or pose other health or safety 
hazards.  Approximately 1,000 accidental releases of hazardous materials from tank cars are 
reported annually to the U.S. Department of Transportation (DOT), Research and Special Pro-
grams Administration (RSPA), Office of Hazard Materials Safety.  Most are small spills and 
leaks but some lead to injuries, property damage, environmental contamination and other con-
sequences of concern. 
 
Two DOT agencies - the Federal Railroad Administration (FRA) and the Research and Special 
Programs Administration (RSPA) - share responsibility for tank car safety in the United States.  
Moreover, these agencies determine which materials must be shipped in tank cars best designed 
to withstand train crashes and to prevent accidental spills of hazardous materials.  In recent 
years, both the FRA and the railroad industry, through the Railway Progress Institute - Associa-
tion of American Railroads (RPI-AAR) Tank Car Safety Research and Test Project, have 
worked cooperatively to develop standards for shipment of hazardous materials in tank cars.  
These efforts have improved the safety of tank car operations. 
 
From 1978 to 1984 regulations were changed to require head protection on most pressure cars 
carrying flammable gases and certain other hazardous materials.  The purpose of head protec-
tion is to increase the resistance of the tank head to puncture from the couplers of other rail 
cars, broken rails, and other objects.  The current regulations, however, do not prescribe how 
this head protection performance standard must be met but permit, as an option, the use of steel 
plates mounted in front of the tank heads which act as head shield protection.  The industry has 
now requested a performance standard for head protection based on the ability to predict punc-
ture velocity in lieu of actual testing. 
 
Studies on tank car puncture were conducted by the RPI-AAR Tank Car Safety Research and 
Test Project in the 1970s.  Data were collected during impact tests on structures of varying 
scales.  As part of that study, empirical equations were developed to calculate the velocity at 
which the tank car shell would puncture (referred to as the puncture velocity).  More recently, 
the DuPont Company modified the semi-empirical equations to include the effect of head pro-
tection and jacket insulation for inter-modal tanks (Belport, 1993).  Subsequently, the FRA re-
quested technical support from the Volpe National Transportation Systems Center (Volpe 
Center) to evaluate the applicability of the semi-empirical equations to actual tank cars. 
 
This report is the second in a series describing methods to calculate the puncture velocity of 
tank car shells.  In the first report, the industry’s semi-empirical approach to determine puncture 
velocity was evaluated by comparing predictions with data from tank car impact tests (Jeong, et 
al., 2001).  Sixty-five test cases involving full-scale and actual tank cars were considered.  The 
data were obtained from three different sources (Phillips and Olsen, 1972; Larson, 1992; and 
Coltman and Hazel, 1992).  In general, the semi-empirical approach underestimated the actual 
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puncture velocity indicating that the approach tends to be conservative.  As such, alternative 
methods may be preferred to avoid over-design. 
 
In this report, methods based on engineering mechanics principles are developed and described.  
No empiricism has been incorporated into the methods presented here.  Analytical and compu-
tational methods are applied to develop structural models of tank car heads.  In these models, 
the tank car head is represented as an ellipsoidal shell.  Specifically, the analytical method is a 
model that examines crushing of rotationally symmetric rigid plastic shells. Rotational symmetry 
implies that the shell is loaded at its center.  The assumptions of rigid plastic material behavior 
and rotational symmetry allow for the derivation of analytical expressions for the load deflection 
response of the shell.  The finite element method is used to examine the more general case of 
off-center loading and elastic-plastic material behavior.  A dynamic lumped-mass model is also 
developed to relate impact velocity to the force applied to the tank head.  Finally, appropriate 
failure criteria are examined to estimate when puncture of the tank will occur. 
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2. SEMI-EMPIRICAL ANALYSES TO CALCULATE PUNCTURE VELOCITY 
 
The semi-empirical equations to calculate puncture velocity were evaluated in a previous report 
by comparing predictions with experimental data (Jeong, et al., 2001).  These equations were 
originally developed by the RPI-AAR Tank Car Safety Project for bare tank car heads (Shang 
and Everett, 1972), and later modified by the DuPont Company to account for head shield pro-
tection and jacket insulation in inter-modal tanks.  The calculations of puncture velocity based 
on these equations were within reasonable agreement with the available experimental data. 
However, differences between the calculated and observed results became more widespread 
when the tanks were pressurized or when head shield protection was present. 
 
The semi-empirical equations are briefly summarized in this section for reference purposes. 
 
(1) Maximum impact force as a function of indentation. 
The maximum force due to a coupler impacting the head of a tank is related to the indentation or 
dent size by the following equation: 
 

 F d d
h
a

p( ) /
.

= × F
HG

I
KJ

+F
HG

I
KJ35 10

2
15

15
6 3 2

3 0 6

 (1) 

 
where F is the maximum impact force (in units of kips), d is the indentation (in inches), h is the 
shell thickness (in inch), a is the radius of the tank head (in inches), and p is the internal pressure 
(in psi).  The exponent of 3/2 for d indicates that a Hertzian relationship between the contact 
force and the indentation was assumed in the formulation.  The Hertz contact assumption implies 
that the problems of elastic contact and elastic impact are treated identically in this formulation.  
The assumption of Hertz contact may be valid for low-velocity impacts, but may be question-
able for impacts resulting in puncture or other types of failure. 
 
(2) Indentation as a function of impact velocity. 
The semi-empirical equation for indentation or dent size is a linear function of impact velocity: 
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where v is the impact velocity (in miles per hour), W1 is the weight of the impacting car (in kips), 
and g is the acceleration due to gravity (386 in/s2).  Also, α is the ratio between the weights of 
the tank car and the ram car or W2/W1. 
 
 
 
(3) Failure criterion. 
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Failure is assumed to occur when the maximum stress exceeds or is equal to the ultimate shear 
strength.  For this purpose, the transverse shear component of stress is calculated for a flat cir-
cular plate subjected to a concentrated load offset from the center to represent a “knuckle” im-
pact.  An infinite series solution for this configuration is available in the open literature (for 
example, refer to page 290 of Timoshenko and Woinowsky-Krieger, 1959).  The RPI-AAR 
formulation is based upon the first five terms of the infinite series solution which gives:   
 

 τ = 181. F
ah

 (3) 

 
where F is the coupler force and a is the radius of the circular plate.  Mathematically, the failure 
criterion can be expressed as: 
 

 181. F
ah u≥ τ  (4) 

 
where τu is the ultimate shear strength of the head material.  In general, mechanical properties 
for a given material are reported in terms of yield strength, ultimate tensile strength, and percent 
elongation.  Assuming that triaxial stresses are related to uniaxial test data by the von Mises 
equivalent stress, the ultimate shear strength is equal to 57.7percent of the ultimate tensile 
strength.  
 
 
2.1 Puncture Velocity for a Bare Tank Car Head 
 
An equation to calculate the maximum coupler force as a function of impact velocity can be de-
rived by combining equations (1) and (2): 
 
 F v W v p( ) . ( ) ( )/ /= 000383 3 32

1
3 2α λ  (5) 

 
where λ(p) is a dimensionless function of internal pressure defined as: 
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. / .

p
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 (6) 

 
The numerical value of λ is always greater than or equal to one.  For example, a value of 1.0 
corresponds to the case of no internal pressure; a value of 1.72 to a pressure of 100 psi. 
 
An expression to calculate the puncture velocity (i.e., the velocity at which puncture of the tank 
may be expected) can be derived by substituting the equation for maximum   coupler force into 
the failure criterion.  In other words, combining equations (4) and (5), and then solving for the 
velocity gives: 
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In this equation, vp is the puncture velocity in miles per hour (mph). 
 
 
2.2 Puncture Velocity for a Tank Car Head with Head Shield and/or Jacket 
 
In the case of head shield protection and/or jacket insulation, the semi-empirical equations in-
clude three auxiliary parameters.  The first of these parameters is referred to as the effective 
thickness, defined by:  
 
 h h h heff h s j= + +1 33 1 33 1 33 1 1 33. . . / .

 (8) 
 
where hh is the tank car head thickness, hs is the head shield thickness, and hj is the jacket 
thickness.  The exponent of 1.33 is an empirical constant.  Another auxiliary parameter is re-
ferred to as the gap factor: 
 

 K
F v g

v W

G
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17 6 2
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where ∆ is the gap or distance between the head shield and the tank shell and g is the accelera-
tion due to gravity (386 in/s2). The conversion factor of 17.6 in/s = 1 mph has also been in-
cluded in this equation.  In addition, F is the maximum coupler force calculated from equation 
(5) for a velocity vpb which is the puncture velocity for a bare tank car head (in mph) with effec-
tive thickness and is defined as: 
 

 v
W

a h
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Then, the puncture velocity for a tank car head with head shield protection and/or jacket insula-
tion can be calculated from: 
 
 v K vp G pb= ⋅  (11) 
 
where KG is the gap factor defined by equation (9) and vpb is defined by equation (10). 
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2.3 Discussion of Semi-Empirical Approach 
 
The semi-empirical approach to calculate the puncture velocity of tank cars is appealing be-
cause of its simplicity.  As such, the semi-empirical approach was evaluated in a previous report 
by comparing predictions with results from impact tests conducted on full-scale and actual tank 
cars (Jeong, et al., 2001).  The comparisons indicate that the semi-empirical equations provide 
reasonable but conservative estimates of puncture velocity.  The conservatism may stem from its 
simplicity. 
 
Further review of the semi-empirical approach indicates that the following factors have not been 
taken into account explicitly: 
 

amount of liquid in the tank (outage) and 
geometry of the tank car head (shape and depth of the tank car head). 

 
The effect of outage can be demonstrated from an examination of the available impact test data 
involving non-pressurized tanks.  For example, Table 1 lists forces and indentations measured 
during ten impact tests on bare tank car heads with varying combinations of tank diameter, shell 
thickness, and outage. In order to minimize the effects from variations in tank diameter and shell 
thickness, the data were normalized using the following procedure.  The measured indentation, 
wo, is divided by the shell thickness, h.  The corresponding dimensionless parameter for meas-
ured impact force is defined as Pa2/Eh4 where P is the measured impact force, a is the radius of 
the tank, E is the modulus of elasticity (assumed to be 3×107 psi for tank car steel), and h is the 
shell thickness. The normalized data are plotted in Figure 1 which also shows regression curves 
for the 2 percent outage and 100 percent outage data.  The open symbols in the figure represent 
cases where the outage in the tank was 100 percent (completely empty tanks).  Conversely, 
solid symbols in Figure 1 represent cases for 2 percent outage (almost full).  From this normali-
zation procedure, Figure 1 suggests that the presence of liquid in the tank has a stiffening effect 
on the load deflection behavior of bare tank car heads. 
 
The effect of the tank car head geometry (shape and depth of the tank car head) will be demon-
strated through structural analyses of curved shells.  These analyses are described in the next 
section of this report. 
 
 
 
 
 
 
 
 
 
 



 7 

 
 

Table 1. Data from Impact Tests on Bare Tank Car Heads  
 

 
 
Case 
No. 

 
 
 
Outage 

Reaction 
Car  
Weight W2 
(kips) 

 
Tank 
Diameter 
2a (inches) 

 
Shell 
Thickness 
h (inch) 

Measured 
Impact Force 
(kips) 

 
Measured 
Indentation 
(inches) 

1 2% 96.6 78 0.500 55 2.75 
     381 12 
2 100% 48.5 87.5 0.500 59 6.5 
     126 13.25 
     137 13.5 
     208 16 
3 2% 107.3 80 0.438 89 6.5 
     410 16.5 
4 100% 48.0 80 0.438 - - 
5 100% 40.9 83 0.438 118 9 
6 2% 128.9 88 0.438 141 11.25 

NOTES: 
(1) All tests performed with non-pressurized tanks. 
(2) No measured data were available for Case 4. 
(3) In all cases, the ram car weight is 128.9 kips. 
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Figure 1.  Normalized Impact Data for Bare Tank Car Heads 
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3. ENGINEERING ANALYSES 
 
In this section, engineering analyses are described that form the basis for rational methods to 
calculate the puncture velocity of tank cars.  These analyses include an analytical model to 
examine the crushing behavior of an ellipsoidal shell, finite element models of flat plates and 
curved shells, and dynamic lumped-mass modeling.  Moreover, these analyses are developed to 
determine: 
 

(1) a mechanics-based relation between indentation and impact force, 
(2) a mechanics-based relation between impact force and impact velocity, and 
(3) a rational criterion for puncture. 

 
 
3.1  Indentation as a Function of Impact Force 
 
Different models with varying geometries (i.e., flat circular plates versus curved spherical shells) 
and material behavior (e.g., elastic versus elastic-plastic) were considered to determine the rela-
tionship between indentation and impact force.   
 
The semi-empirical equation relating indentation and impact force assumes Hertzian contact 
which generally applies to contact of linear elastic bodies.  For this reason, preliminary calcula-
tions for load versus deflection were based on linear-elastic plate theory.  Such calculations, 
however, were found to produce unrealistic deflections.  That is, extremely high deflections 
were calculated for high impact forces (e.g., approximately 100 inches for 2000 kip loads).   
 
 
3.1.1 Analysis Based on Plastic Collapse 
 
An analytical model was developed previously to calculate the load versus deflection behavior 
of pressurized hemispherical shells (Lupker, 1990).  The model was based on a plastic-collapse 
model originally developed by de Oliveria and Weirzbicki (1982) for non-pressurized hemi-
spherical shells.  In these models, the shell is subjected to a centrally applied concentrated load 
which results in axisymmetric deformation of the shell.  Moreover, assuming both axisymmetric 
deformation and rigid plastic material behavior provides an analytical expressions for load ver-
sus deflection. 
 
In the present study, the analyses developed by de Oliveria and Weirzbicki and by Lupker have 
been further modified to examine the load deflection behavior of pressurized ellipsoidal shells 
with an arbitrary aspect ratio. This modification represents a more general case of shell defor-
mation since a hemispherical shell is a special limiting case of an ellipsoidal shell.  Referring to 
Figure 2, the geometry of the ellipsoidal shell is defined by a and b which represent the semi-
major axis length of the ellipsoid and semi-minor axis length, respectively.  For example, the as-
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pect ratio (b/a) for a hemispherical shell is equal to one.  In the design of actual tank cars, the 
aspect ratio is usually less than ½. 
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Figure 2.  Schematic of Rigid Plastic Deformation of an Ellipsoidal Shell 
 

 
Expressions for the load and deflection of an ellipsoidal shell are written in terms of a parameter 
θ.  Physically, θ is the angle at which a plastic-hinge circle forms as a result of the rigid plastic 
deformation (Figure 2).  As the applied load increases and plastic deformation spreads toward 
the edges of the shell, the angle θ increases. The parametric equations for the applied load and 
center deflection of the shell as functions of the angle θ are: 
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 w
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I
KJ −2 1 cosθb g  (13) 

 
where Mo is the fully-plastic moment and Po is a dimensionless pressure parameter which are 
defined as: 
 

 M ho o=
1
4

2σ  P
pa

ho
o

=
2σ

 (14) 

 
In these equations, σo is the flow stress, h is the shell thickness, and p is the internal pressure.  
Also,  
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 (16) 

 
The derivation of these equations is given in Appendix A.   
 
Figure 3 shows the effect of flow stress on the load deflection behavior of rigid plastic ellipsoidal 
shells.  These results apply to shells with a tank diameter of 87.5 inches and thickness of ½ inch.  
These dimensions correspond to Case 2 in Table 1 on page 7.  Also, the aspect ratio, or ratio 
of the semi-minor axis length to the semi-major axis length, b/a, is assumed to be ¼.  The figure 
indicates that the force level to achieve a given deflection increases as the flow stress increases.  
An artifact of the rigid plastic assumption is that the force is a finite value when the deflection is 
zero.1 
 
 

0 5 10 15 20
0

200

400

600

800

1,000

Center deflection (inches)

Force (kips)

35 ksi 50 ksi 65 ksi

 
 

Figure 3. Effect of Flow Stress on Rigid Plastic Analysis of Ellipsoidal Shells 
 
 

                                                 
1 Equation (12) reduces to F =2ðMo when è is equal to zero which corresponds to the unde-
formed state. 
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The effect of the aspect ratio on the load deflection behavior of rigid plastic ellipsoidal shells is 
shown in Figure 4.  These results apply to shells with a tank diameter of 87.5 inches and thick-
ness of ½ inch.  Also, the flow stress is assumed to be 50 ksi which is equal to the yield strength 
for AAR TC-128 Grade B tank car steel.  These results show that deflection is essentially inde-
pendent of aspect ratio for force levels below 200 kips.  At force levels greater than 200 kips, 
however, a higher load is needed to achieve a given deflection as the aspect ratio decreases.  
The effect is magnified as the force levels increase.  Moreover, at these higher force levels, the 
effective stiffness of the shell increases as the aspect ratio decreases. 
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Figure 4.  Effect of Aspect Ratio on Rigid Plastic Analysis of Ellipsoidal Shells 
 
 
The geometry of the tank car head is also defined by the tank diameter and shell thickness.  Fig-
ure 5 shows the effect of tank diameter on the load deflection behavior of rigid plastic ellipsoidal 
shells.  The values assumed for the tank diameter essentially represent the range of values listed 
in Table 1 for bare tank car heads.  The figure indicates that the load deflection behavior is in-
dependent of tank diameter when forces are less than 250 kips. At forces greater than 250 
kips, the shell with the larger diameter deflects more at the same force level than the shell with 
the small diameter.  The effect of shell thickness on the load deflection behavior of rigid plastic 
ellipsoidal shells is shown in Figure 6. This figure indicates that greater force is needed to deflect 
the thicker shell to the same indentation as the thinner shell.  The results in both figures apply to 
shells with an aspect ratio equal to ¼. 
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Figure 5.  Effect of Tank Diameter on Rigid Plastic Analysis of Ellipsoidal Shells 
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Figure 6.  Effect of Shell Thickness on Rigid Plastic Analysis of Ellipsoidal Shells 
 
The effect of internal pressure on the load deflection behavior of rigid plastic shells is shown in 
Figure 7.  These results apply to ellipsoidal shells with an aspect ratio equal to ¼ and a flow 
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stress equal to 50 ksi.  Qualitatively, these results indicate that internal  pressure increases the 
effective stiffness of the shell which is consistent with results from the semi-empirical approach.  
Quantitatively, however, the effect of internal pressurization as shown in Figure 7 is less than that 
indicated by the semi-empirical formula for impact force as a function of indentation, as given by 
equation (1).  For example, an internal pressure of 20 psi requires an impact force that is 1.7 
times the force for the non-pressurized case to achieve the same indentation according to equa-
tion (1).  From Figure 7, the same factor is roughly between 1.2 and 1.3.  Similarly, an internal 
pressure of 40 psi requires 2.2 times the force of the non-pressurized case to achieve the same 
indentation, according to the semi-empirical equation.  The same factor is between 1.4 and 1.6, 
according to the results from the rigid plastic analysis.   In other words, the semi-empirical ap-
proach estimates a greater effect of internal pressurization on the load deflection response than 
the rigid plastic ellipsoidal shell model.  Tanks are usually pressurized when they contain liquid.  
Therefore, these comparisons may suggest that the semi-empirical approach overestimates the 
effect of pressurization to compensate for excluding the effect of outage.  
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Figure 7.  Effect of Internal Pressure on Rigid Plastic Analysis of Ellipsoidal Shells 
 
 

On one hand, the rigid plastic analysis of ellipsoidal shells is convenient because an analytical 
solution for load versus deflection is available.  On the other hand, the analysis is limited to im-
pacts at the center of the shell.  Moreover, the rigid plastic assumption requires knowledge of 
the flow stress.  Conventionally, the flow stress can be taken as the yield strength, the ultimate 
tensile strength, or the average of the yield and ultimate tensile strengths.  However, the results 
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shown in Figure 3 indicate that the magnitude of the flow stress has a significant influence on the 
load deflection behavior. 
In principle, the limitations of the analytical model for ellipsoidal shells can be handled using the 
finite element method.  That is, the finite element method represents a versatile computational 
tool that can examine the effects of off-center impacts and more realistic material behavior. 
 
3.1.2 Finite Element Analyses 
 
Finite element (FE) models have been developed by the industry for various purposes, but none 
seem appropriate for predicting puncture velocity, at this time.  In the present study, FE analy-
ses are conducted using the NIKE code for quasi-static loading conditions and the DYNA 
code for dynamic loading. 
 
The starting point for the finite element analyses in the present study was to approximate the 
tank car head as a flat circular plate.  Various levels of complexity will be incorporated into the 
finite element modeling after each step has been validated through analytical solutions or avail-
able experimental data. 
 
Nonlinear elastic, flat circular plate with clamped edges 
 
The finite element results for a flat circular plate with clamped edges were validated through 
comparisons with approximate analytical solutions.  For example, based on elastic large-
deflection plate theory, the relationship between the maximum deflection and total load on the 
plate is given by (see page 415 of Timoshenko and Woinowsky-Krieger, 1959): 
 

 w
h

A
w
h

B
Pa
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o o+ F
HG

I
KJ =

3 2

4
 (17) 

 
where wo is the displacement at the center of the plate, h is the plate thickness, a is the radius of 
the plate, and E is the modulus of elasticity.  Also, A and B are constants that depend on the 
boundary conditions (simply supported versus clamped edges), type of loading (concentrated 
load versus uniformly distributed load over the entire plate), and Poisson’s ratio.  Values for A 
and B are listed in Table 2 for flat circular plates with clamped edges subjected to a concen-
trated load at the center, and assuming Poisson’s ratio is equal to 0.3. 
 

Table 2. Assumed Constants for Large Elastic Deflection Analysis 
 

 A B 
Immovable edge 0.443 0.217 
Edge free to slide 0.200 0.217 
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Figure 8 compares the quasi-static finite element (FE) results with the analytical solutions for flat 
circular plates with movable and immovable edges; i.e., equation (17).  These results were con-
ducted for a plate with a diameter of 87.5 inches and a thickness of 0.5 inches.  In the finite 
element model, the total load was distributed uniformly over a square area at the center of the 
plate.  The loaded area was 5 percent of the total surface area of the plate to approximate the 
application of a concentrated load. The analytical solutions bracket the FE results; the analytical 
solution for an immovable edge represents the lower bound on the deflection at a given load 
level while the solution for edges that are free to slide gives the upper bound.  
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Figure 8.  Comparison between Finite Element Analysis and Analytical Solution for 
Large Elastic Deflection of Flat Circular Plates with Clamped Edges 

 
Elastic-plastic flat circular plate with clamped edges 
 
The next logical progression in the finite element analysis of flat plates is to examine the effect of 
elastic-plastic material behavior.  Elastic-plastic material behavior is represented in the FE mod-
els by specifying a stress-strain curve for a given material.  Table 3 lists the minimum require-
ments for AAR TC-128 Grade B tank car steel.  These minimum requirements were used to 
construct a bilinear (i.e., linear hardening) stress-strain curve where the modulus of elasticity E is 
assumed to be 3×107 psi and the tangent modulus Etan is 1.65×105 psi (Figure 9). 
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Table 3.  Minimum Requirements for AAR TC-128 Steel 

 
Property Value 
Yield strength, σYLD 50 ksi 
Ultimate tensile strength, σULT 81 ksi 
Percent elongation 19% in 2 inches 
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Figure 9.  Schematic of Linear-Hardening Stress-Strain Curve 
 
 
Figure 10 compares the quasi-static finite element results for elastic (with large deflections) ver-
sus elastic-plastic material behavior as modeled by the linear strain-hardening stress-strain 
curve.  The results show larger deflections for elastic-plastic plates than for elastic plates under 
the same load.  This result is reasonable because plates that have yielded are less likely to resist 
deformation. At force levels greater than 200 kips, the relation between load and deflection for 
the elastic-plastic case is practically linear.  The figure also shows a plot of equation (1) for a 
tank car head with a diameter equal to 87.5 inches and shell thickness equal to 0.5 inch.  The 
load deflection response provided by the analysis of flat plates is much stiffer than the correlated 
test results. 
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Figure 10.  Elastic and Elastic-Plastic Load Deflection Behavior of Flat 
Circular Plates 

 
 
Elastic-plastic material behavior may also be modeled using a nonlinear stress-strain curve.  For 
instance, nonlinear strain hardening can be modeled using a Ramberg-Osgood curve which is 
expressed mathematically as: 
 

 ε σ σ= + F
HG

I
KJE K

n

 (18) 

 
where ε is the strain, σ is the stress, and Ε is the modulus of elasticity. Also, K and n are con-
stants, which are equal to 9.68×104 ksi and 9.41 respectively for AAR TC-128 steel.  Figure 
11 compares the linear and nonlinear hardening stress-strain curves used in the finite element 
analyses. The nonlinear stress-strain curve is effected in the finite element analyses by specifying 
a piecewise linear relation. The stress-strain relation as modeled by the nonlinear hardening 
curve provides a smoother transition from the elastic to the plastic stress states, while the linear 
hardening curve has a discontinuity in slope at the yield strength. 
 
Figure 12 compares the elastic-plastic deformation of flat circular plates with clamped edges as 
modeled by the linear and nonlinear hardening stress-strain curves.  At force levels less than 200 
kips, a slightly stiffer load deflection response is evident when the stress-strain curve is approxi-
mated by the Ramberg-Osgood equation (nonlinear hardening case).  Between 200 and 400 
kips, the load deflection behavior is nearly identical.  When the forces are greater than 400 kips, 
the difference in the tangent moduli between the linear and nonlinear hardening models greatly 
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affects the load deflection response.  In other words, the tangent modulus for the linear harden-
ing curve is always greater than the nonlinear hardening case which leads to a stiffer load deflec-
tion response.  
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Figure 11.  Linear and Nonlinear Hardening Stress-Strain Curves for 
Tank Car Steel 
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Figure 12. Elastic-Plastic Behavior of Flat Circular Plates Modeled by Linear and 
Nonlinear Strain Hardening 
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Elastic-plastic ellipsoidal shells 
 
Since the head of a tank car is actually a curved surface, the next logical step is to vary the ge-
ometry of the plate to resemble the head of a tank car.  Therefore, hemispherical and ellipsoidal 
shells are examined.  Changing the geometry from a flat circular plate to a hemispherical or ellip-
soidal shell increases the likelihood of a snap-through phenomenon where a sudden jump in de-
flection may occur from a relatively small increase in force. 
 
In the FE models for ellipsoidal shells, the total load was distributed over a square area (12 
inches × 12 inches) to approximate the region of contact produced by a coupler impacting a 
tank car head.  Elastic-plastic material behavior is modeled in the finite element analysis by a 
piecewise linear representation of the Ramberg-Osgood stress-strain curve, defined by equation 
(18), for AAR TC-128 tank car steel.  The analyses were conducted for shells with clamped 
edges.  Later in this section, the effect of boundary conditions on the load deflection analysis will 
be examined by considering simply-supported edges.  The effects of various geometric, mate-
rial, and loading parameters on the finite element results will be described in the remainder of 
this section. 
 
Figure 13 compares the quasi-static FE results for ellipsoidal shells of varying aspect ratios.  
The FE results for a flat plate (b/a =0) and a hemispherical shell (b/a =1) are plotted in the fig-
ure to represent bounding cases.  These results correspond to shells or plates with diameter (2a) 
equal to 87.5 inches and shell thickness (h) equal to 0.5 inches.  Initially, the hemispherical shell 
is stiffer than the flat plate.  At a load level of about 100 kips, the load deflection curves for the 
hemispherical shell and flat plate intersect.  For loads greater than 100 kips, the flat plate is 
stiffer than the hemispherical shell.  More-over, the aspect ratio can have a significant effect on 
the load versus deflection response, especially at force levels greater than 300 kips.  Snap-
through is most evident in the case of the hemispherical shell where the deflection jumps from 
about 1.3 to 4.3 inches as the load is increased from 150 to 200 kips.  Snap-through also ap-
pears to occur in ellipsoidal shells with other aspect ratios, but the magnitude of the deflection 
and load level at which snap-through occurs decrease as the aspect ratio decreases.  At load 
levels less than 50 kips, the ellipsoidal shells are relatively stiffer than the flat plate.  After snap-
through occurs, however, the slopes of the load deflection curves for the ellipsoidal shells are 
less than the slope for the flat plate.  The figure also shows the relationship between load and 
deflection as given by the semi-empirical formula; namely, equation (1).  The figure indicates that 
the semi-empirical equation corresponds approximately to the FE result for an aspect ratio 
equal to ¼. 
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Figure 13. Effect of Aspect Ratio on Elastic-Plastic Finite Element Analysis 
 
 
The rigid plastic analysis described in Section 3.3.1 assumes that the impact load is applied at 
the center of the shell.  Mathematically, this simplifying assumption reduces a three-dimensional 
shell-deformation problem to a two-dimensional one.  Moreover, this idealization leads to the 
derivation of closed-form parametric expressions for load and deflection.  The finite element 
method is now adopted to examine the effect of off-center impact loading on the load deflection 
response of ellipsoidal shells with an aspect ratio of 1/3, tank diameter of 87.5 inches, and shell 
thickness of 0.5 inch. Figure 14 indicates that off-center loading of the ellipsoidal shell produces 
a slightly stiffer deflection response compared to the center-loaded case.  The difference be-
tween the center and off-center loading becomes greater as the load level increases.  In this 
analysis, the off-center load was applied at a distance midway between the center of the tank 
and its edge. This location corresponds to the height at which full-scale tanks were damaged 
during simulated coupler-type impact tests (Phillips and Olsen, 1972).  
 
The effect of material properties on the finite element analyses was examined by varying the 
yield strength in the stress-strain curve with nonlinear strain hardening.  In these analyses, the 
nominal yield strength for tank car steel was assumed to be 50 ksi, and then varied ±30 percent 
while the modulus of elasticity was held constant at a value of 3×107 psi.  Figure 15 shows the 
effect of this variation of yield strength on the load deflection response.  The figure indicates that 
increasing the yield strength produces a stiffer load deflection response. 
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Figure 14.  Effect of Off-Center Loading on Elastic-Plastic Finite Element Analysis 
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Figure 15.  Effect of Yield Strength on Elastic-Plastic Finite Element Analysis 
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Tank diameter and shell thickness are two additional parameters that define the geometry of the 
tank car shell.  Figure 16 shows the effect of tank diameter on the finite element results.  The 
figure indicates that reducing tank diameter slightly increases the structural stiffness of the shell.  
The influence of varying the shell thickness is shown in Figure 17.  As thickness increases, the 
structural stiffness of the shell increases.  These trends are consistent with the semi-empirical 
equations.  In other words, the finite element method and the semi-empirical approach demon-
strate that reducing tank diameter or increasing shell thickness increases the effective structural 
stiffness of the shell. 
 
Up to this point, the elastic-plastic finite element analyses of ellipsoidal shells were conducted by 
specifying clamped edges at the boundary conditions.  Simply-supported boundary conditions 
were also considered, and its effect on the FE results is shown in Figure 18.  Evidently, the load 
deflection response is unaffected by boundary conditions for loads are less than 200 kips.  For 
loads greater than 200 kips, the clamped-edge condition produces a stiffer load deflection re-
sponse than the simply-supported boundary condition. 
 
Figure 19 compares results from the elastic-plastic finite element analysis with the analytical 
solution for the deflection of rigid plastic ellipsoidal shells.  Both analyses were conducted for 
shells with an aspect ratio of 1/3.  Three values for flow stress (20, 35, and 50 ksi) were as-
sumed in the rigid plastic analyses.  In the finite element analysis, the load was applied at the 
center of the shell and was distributed uniformly over a square area equal to 5 percent of the 
total surface area to approximate a concentrated load.  Also, the yield strength and ultimate ten-
sile strength in the elastic-plastic finite element analyses were assumed to be 50 and 81 ksi, re-
spectively.  The figure indicates that the results from both the analytical and finite element models 
have similar trends in the load deflection behavior even though the material characterizations are 
different. For this reason, the comparison between the finite element and analytical results is 
considered qualitative. Moreover, the finite element results are bounded by the analytical results 
for flow stress values between 20 and 50 ksi.  These results suggest that representing the tank 
car head as an ellipsoidal shell with an appropriate choice of a material model can provide a 
reasonable estimation of its structural behavior. 
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Figure 16.  Effect of Tank Diameter on Elastic-Plastic Analysis 
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Figure 17.  Effect of Shell Thickness on Elastic-Plastic Analysis 
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Figure 18.  Effect of Boundary Conditions on Elastic-Plastic Analysis 
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Figure 19.  Comparison between Analytical and Finite Element Models 
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3.2 Impact Force as a Function of Impact Velocity 
 
In order to apply the analyses described in Section 3.1 to tank car impacts, the impact force 
must be related to the impact velocity.  Simple relations can be developed from basic engineer-
ing principles to relate the equivalent static force to the impact velocity.  However, calculations 
based on the conservation of energy cannot be realistically applied without estimating the energy 
lost or absorbed during impact.  Also, application of the impulse-momentum principle tends to 
overestimate the maximum impact force.  Moreover, the time duration for the impact event must 
be assumed when applying the impulse-momentum principle.2 
 
Based on limited test data, the load-time history for a coupler impacting the head of a tank car 
resembles a triangular impulse load with a time duration on the order of 0.25 second.  In princi-
ple, the peak in the triangular pulse, which represents the maximum impact force, should depend 
on the impact velocity. 
 
In the present study, a dynamic lumped-mass model was developed which can be used to: (1) 
determine the load versus time history for a ram car impacting a tank car at a specified impact 
velocity, and (2) relate the impact velocity to the maximum impact force. The model is shown 
schematically in Figure 20 where the spring characteristic representing the deformation of the 
tank car head is assumed to be a nonlinear function of impact load.  Moreover, the spring char-
acteristic can be determined from one of the structural analysis models described in Section 3.1. 
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Figure 20.  Dynamic Lumped-Mass Model for Tank Car Impact 

 

                                                 
2 The impulse-momentum principle is expressed mathematically as 
 
 m v F t dto1 0

= z ( )
τ

 
 
where m1 is the mass of the impacting object, vo is the initial impact velocity, F(t) is the impact 
force as a function of time, and τ is the impact duration. 
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For mathematical convenience, the nonlinear spring characteristic in the model is represented by 
a piecewise linear curve, shown schematically as a hardening spring in Figure 21.  Thus, the load 
versus displacement curve is defined by the coordinates (äi, Fi) where i is the number of break 
points in the curve.  The piecewise linear representation of the spring characteristic allows for an 
analytical solution to the equations of motion to the lumped-mass system shown in Figure 20 
(for example, refer to Timoshenko, et al., 1974).  The mathematical formulation of the dynamic 
lumped-mass model is described in Appendix B. 
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Figure 21.  Piecewise Linear Spring Characteristic 
 
 
Figure 22 shows the force-time histories for four different impact velocities as predicted by the 
dynamic lumped-mass model.  In these results, the spring stiffness in the lumped-mass model 
was obtained by applying the elastic-plastic finite element model for a centrally loaded ellipsoi-
dal shell with an aspect ratio of ¼, tank diameter of 87.5 inches, and shell thickness of 0.5 inch. 
The yield strength and the ultimate tensile strength were assumed to be 50 and 81 ksi, respec-
tively, which correspond to the mechanical properties for AAR TC-128 tank car steel.  In the 
dynamic analysis, the ram car weight was equal to 128,900 lb and the reaction-car weight was 
equal to 48,500 lb.  The shapes of the force-time pulse are asymmetrical, and the impact dura-
tion varies for different impact velocities. The calculated times for impact duration are on the 
order of 0.20 second which is slightly less than the observed impact duration time of 0.25 sec-
ond. Figure 23 shows the variation of peak impact force as a function of impact velocity.  The 
figure also shows the relation between maximum impact force and impact velocity as given by 
the semi-empirical approach; i.e., equation (5).  For this particular structural model, the lumped-
mass analysis predicts a larger impact force than the semi-empirical approach at the same 
velocity.  
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Figure 22. Force Histories for Different Impact Velocities Predicted by Lumped-Mass 
Model Based on Structural Analysis of an Ellipsoidal Shell 
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Figure 23 . Comparison between Semi-Empirical Equation and Results from 
Dynamic Model for an Elastic-Plastic Ellipsoidal Shell 
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The dynamic lumped-mass analysis was repeated using the same structural model as the previ-
ous results, but with the yield strength reduced by 30 percent (i.e., 35 ksi rather than 50 ksi).  
Figure 24 shows the corresponding force-time histories for varying impact velocities.  The im-
pact duration times calculated from the analysis vary between 0.23 and 0.25 seconds, com-
pared to the measured time of 0.25 second.  Moreover, the peak impact forces are reduced 
when a lower yield strength is assumed.  Figure 25 shows the variation of the maximum impact 
force with impact velocity.  When compared with Figure 23, these results indicate that a 30 
percent reduction in yield strength corresponds to a reduction in peak impact force between 14 
and 26 percent depending on the impact velocity.  The semi-empirical relation between coupler 
force and impact velocity is also shown in Figure 25 for comparison.  The peak impact force 
calculated from the engineering analyses is equal to the result from the semi-empirical approach 
at about 17 mph.  Results for impact velocities between 14 and 18 mph are given particular at-
tention because CFR 179.105-5 describes a performance standard requiring tank car heads to 
withstand minimum impact velocities within this range depending on the ram car weight. 
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Figure 24.  Force Histories for Different Impact Velocities Predicted by 
Lumped-Mass Model Based on Structural Analysis of an Ellipsoidal Shell 

 
 
 



 31 

0 5 10 15 20
0

100

200

300

400

500

Impact velocity (mph)

Maximum impact force (kips)

Semi-emp. eqn. Lumped-mass Model

 
 

Figure 25.  Comparison between Semi-Empirical Equation and Results 
from Dynamic Model for an Elastic-Plastic Ellipsoidal Shell 

 
3.3 Failure Criteria 
 
In predicting failure, engineering analyses must rely on an appropriate failure criterion.  In such 
analyses, failure (or more specifically, puncture) is assumed to occur when the assumed quantity 
or criterion (typically, a stress or strain component) exceeds a critical value.  In this section, 
various criteria are examined which can be applied to the structural models described in this re-
port to predict puncture of a tank from impact.  These criteria include: (1) transverse shear 
stress, (2) effective plastic strain, and (3) effective stress. 
 
 
3.3.1 Transverse Shear Stress 
 
In the semi-empirical approach, the failure criterion was based on the linear elastic solution for 
the transverse shear stress in a flat circular plate subjected to a centrally applied load: 
 

 τ
πrz
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r h
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h

= − F
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1 2 2

( )
 (19) 

 
where P is the applied load, r is the radial distance from the center, h is the plate thickness, and 
z is the transverse co-ordinate through the thickness with its origin at the mid-plane of the plate.  
From this equation, it can be seen that: (1) the maximum transverse shear occurs at the mid-
plane of the plate (i.e., at z = 0), and (2) the transverse shear stress has a singularity at the cen-
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ter of the plate (i.e., at r = 0).  Based on linear-elastic plate theory, the transverse shear stress is 
a linearly increasing function of applied load.  Also, this expression is invariant with respect to 
boundary conditions and the pressure distribution assumed for contact loading.  In other words, 
equation (19) is the same whether the plate is simply supported or has fixed edges, or whether 
the plate is loaded by a constant uniform load or by a Hertzian distribution over an equal area. 
 
Large deflection finite element analyses were conducted to examine transverse shear for flat cir-
cular plates.  The finite element analyses, however, calculate a quantity known as the shear re-
sultant which is directly proportional to transverse shear stress.  Figure 26 shows the variation of 
the shear resultant with applied load for different assumptions regarding material behavior.  Un-
der nonlinear elastic material behavior, the shear resultant is a monotonically increasing, nonlin-
ear function of applied force.  When elastic-plastic material behavior is assumed (represented 
by a Ramberg-Osgood stress-strain curve in the finite element model), the shear resultant 
reaches a maximum value at a relatively low load level (on the order of 100 kips).  Since the 
semi-empirical approach is based on Hertzian contact, which is applicable to impact of linear 
elastic bodies, the use of transverse shear as a failure criterion is consistent with the assumed 
material model.  If, however, an elastic-plastic material model is assumed, these results suggest 
that using the transverse shear (or equivalently, the shear resultant) as a failure criterion is inap-
propriate. 
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Figure 26.  Finite Element Results For Shear Resultant as a Function 
of Force in Flat Circular Plates 
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3.3.2 Effective Plastic Strain  
 
The rigid plastic ellipsoidal shell model is used to examine plastic strain as a viable failure crite-
rion for puncture.  Referring to Appendix A, the shape of the deformed part of the shell can be 
described mathematically by: 
 

 y x y
Cr

B
x xA B( ) = + F
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I
KJ − −

L
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1
2 2

2
2b g  (20) 

 
from which successive differentiation with respect to x gives: 
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where ρ is the radius of curvature. 
 
The maximum strain is expected to occur at the plastic-hinge circle, and is defined mathemati-
cally as: 
 

 ε
ρmax = ⋅⋅ ≅

h h
Cr2

1
2

1  (22) 

 
where h is the shell thickness.  Also, referring to Appendix A: 
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where a and b are the semi-major and semi-minor axis lengths of the ellipsoidal shell, respec-
tively.  Therefore, 
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Strictly speaking, the radius of curvature ρ is related to the first and second derivatives of y by: 
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 (26) 

 
The first derivative of y is evaluated at the location of the plastic hinge, or  
 
 x x R rB= = −( )sinθ  (27) 
 
Thus, 
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Note, however, that the bracketed term that is raised to the 3/2 power is approximately equal 
to one for all practical values of b/a and è.  Therefore, equation (25) is used to calculate the 
maximum strain. 
 
Figure 27 shows a plot of the maximum strain, as calculated from equation (25), as a function of 
applied force, as calculated from equation (12), for a variety of cases corresponding to those 
listed in Table 1.  The maximum strain is shown to be a monotonically increasing function of ap-
plied load.  In each of these cases, the aspect ratio is assumed to be 1/3 and the flow stress is 
assumed to be 50 ksi.  Moreover, failure is assumed to occur when the plastic strain exceeds 
the ultimate failure strain.  For this purpose, a value of 0.2 is assumed as the ultimate failure 
strain for standard tank car steels.  These results indicate that the load at failure varies between 
475 and 600 kips depending on the particular case of interest. 
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Figure 27.  Analytical Results for Maximum Strain as a Function of Force 
 
 
 
For comparison purposes, finite element analyses were conducted to calculate the effective 
plastic strain in elastic-plastic ellipsoidal shells.  Figure 28 shows the finite element results in 
terms of maximum plastic strain as a function of applied load.  In these analyses, the aspect ratio 
was assumed to be ¼.  Also, a Ramberg-Osgood stress-strain curve was assumed where the 
yield strength was equal to 35 ksi.  The maximum plastic strain is shown to be a monotonically 
increasing function of applied force.  Assuming failure occurs when the maximum plastic strain is 
equal to the ultimate failure strain, these results predict that puncture in these cases occurs at 
load levels between 530 and 590 kips.  Moreover, these results suggest that plastic strain is an 
appropriate failure criterion for elastic-plastic ellipsoidal shells. 
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Figure 28.  Finite Element Results for Maximum Strain as a Function of Force 
 
 
3.3.3 Effective Stress 
 
The finite element analyses conducted to examine maximum plastic strain were also used to ex-
plore effective stress as a potential failure criterion.  Figure 29 shows the finite element results in 
terms of effective stress as a function of applied load for the various cases.  The plots of effec-
tive stress correspond to the center of the shell which is where the impact load is applied.  The 
variation of effective stress with applied force somewhat resembles the variation of stress as a 
function of strain, but with two distinct differences. The first difference is that the effective stress 
is not a monotonically increasing function of force. The second difference is that the point in 
these curves that would be analogous to the yield point corresponds to an effective stress of 
between 55 and 70 ksi at a force level of about 50 kips while the yield strength for this particu-
lar material was assumed to be 35 ksi.  After yielding has occurred, the effective stress drops 
off to almost 40 ksi, presumably while the load is redistributed through the shell.  At a force 
level of about 100 kips, the effective stress increases monotonically.  A linear extrapolation of 
these curves shows that an effective stress of 70 ksi would be reached at a force level of about 
900 kips.  The value of 70 ksi represents the ultimate tensile strength of this particular material.  
The effective stress does not appear to be an appropriate choice as a failure criterion for elastic-
plastic shells mainly because it is not a monotonically increasing function of impact force. 
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Figure 29.  Finite Element Results for Effective Stress as a Function of Force 
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4. METHODS FOR CALCULATING PUNCTURE VELOCITY 
 

Engineering methods to determine the puncture velocity of tank car shells are described in this 
section.  These methods rely on the engineering analyses described in Section 3.  Moreover, the 
methods are based strictly on engineering mechanics principles and do not include any empiri-
cism.  The methods presented here require a structural model to derive a relation between im-
pact force and indentation. The results from the structural model are then applied to the dynamic 
lumped-mass model to determine the relation between maximum impact force and impact 
velocity.  The results from these two models are combined to estimate the puncture velocity for 
a given tank car design by assuming an appropriate failure criterion.  In this section, two 
engineering-based methods are presented to determine the puncture velocity of tank car shells.  
The first approach uses an analytical model for structural analysis of an ellipsoidal shell.  The 
second approach is based on finite element modeling. 
 
 
4.1 Analytical Method 
 
The first method to calculate puncture velocity is based on the analytical model for a rigid plastic 
ellipsoidal shell loaded at its apex (Section 3.1.1).  The general approach is shown schematically 
in Figure 30.  In the results that follow, the puncture velocity was calculated by assuming maxi-
mum strain as a failure criterion.  In other words, puncture of the tank car shell is assumed to 
occur when the  maximum strain exceeds a certain critical value.  For this purpose, the ultimate 
failure strain for standard tank car steel (0.2) is assumed as a critical value. 
 
Table 4 compares the puncture velocities estimated by the analytical method with those calcu-
lated from the semi-empirical approach.  The tank diameter and shell thickness for each case 
were listed previously in Table 1.  Since the specific shape and depth of the tank car head were 
unknown, three values for aspect ratio were assumed.  Also, a flow stress of 35 ksi was as-
sumed in the engineering analysis for each case.3  Only one full-scale test listed in Table 4 
(namely, Case 4) resulted in a puncture of the tank (at an impact velocity of 16.1 mph).  Coin-
cidentally, the puncture velocities calculated from the analytical method for an aspect ratio of 1/3 
and the semi-empirical approach for this particular case were equal to 15.2 mph.  In general, 
the puncture velocities calculated from the analytical method are less (i.e., more conservative) 
than those calculated by the semi-empirical approach. 
 
 

                                                 
3 The full-scale impact tests were conducted with tank car heads made from AAR M-115 steel 
which was reported by Phillips and Olsen (1972) to have a tensile strength between 55 and 65 
ksi and a yield strength equal to one-half of the tensile strength. 



 39 

m1 m2

k(x)vo

z1 z2

x=z1-z2

Force

Displacement

Maximum Strain

Force

εult

Fcr

Dynamic Lumped-Mass
Model

Closed-Form Ellipsoidal
Shell Model

F

Maximum Force

Impact Velocity

Rigid-Plastic Material

Fcr
vp

k(x)

 
 

Figure 30.  Analytical Method to Calculate Puncture Velocity 
 
 
 

Table 4.  Puncture Velocities Calculated from Analytical Method 
for Bare Tank Car Heads  

 
Case Outage Puncture Velocity (mph) 

  Semi-emp. Analytical Method 
  Approach b/a=1/4 b/a=1/3 b/a=1/2 
1 2% 17.9 11.1 12.9 15.8 
2 100% 20.1 15.2 17.8 21.9 
3 2% 16.5 10.0 11.7 14.5 
4 100% 15.2 12.9 15.2 18.7 
5 100% 18.0 14.1 16.6 20.5 
6 2% 14.6 10.3 12.1 15.0 

NOTES: 
(1) See Table 1 for structural details corresponding to specific cases.   
(2) In the analytical method, the flow stress is assumed to be 35 ksi. 
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4.2 Finite Element Method 
 
The estimation of puncture velocity based on the analytical solution for ellipsoidal shells is limited 
to impacts at the center of the tank car head and to rigid plastic material behavior.  These limita-
tions can be managed by applying the finite element method but at the expense of more detailed 
analysis. The application of the finite element method to calculate the puncture velocity of tank 
cars is shown schematically in Figure 31. 
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Figure 31. Finite Element Method to Calculate Puncture Velocity 
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The quasi-static finite element analyses were conducted to determine the load deflection re-
sponse for the different cases involving bare tank car heads listed in Table 1.  In these analyses, 
the aspect ratio of the tank car head was assumed to be ¼, and the yield strength was assumed 
to be 35 ksi.  Figure 32 shows the load deflection response for the various cases in which the 
tank diameter and shell thickness are different.  The figure also shows the data measured during 
the tests for indentation and impact force.  The two data points at 381 and 410 kips correspond 
to tests conducted using tanks with 2 percent outage.  Otherwise, the general agreement be-
tween the finite element analysis and experimental data is reasonable. 
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Figure 32.  Quasi-Static Finite Element Results for Load deflection 
Response of Bare Tank Car Heads  

 
 
The results from the finite element analysis (shown in Figure 32) were used to represent the 
spring characteristic for the dynamic lumped-mass model to determine the relation between 
maximum impact force and impact velocity.  Results from the dynamic lumped-mass model cor-
responding to Case 2 are shown in Figure 33.  The figure also shows the relationship between 
maximum force and impact velocity relationship as given by the semi-empirical approach for the 
same case.  The lumped-mass analysis calculates higher maximum force levels than the semi-
empirical approach at the same impact velocity. 
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Figure 33.  Results from Dynamic-Lumped Mass Analysis for Case 2 
 
 
In order to predict puncture, the maximum strain was adopted as a failure criterion in the pre-
sent study.  Figure 34 shows the relationship between maximum strain and impact force for 
Case 2 as determined from the finite element analysis.  Failure is expected to occur when the 
maximum strain reaches 0.2 which corresponds to the ultimate failure strain for tank car steel.  
Referring to Figure 34, the impact force corresponding to a maximum strain of 0.2 is 577 kips.  
Referring to Figure 33, a maximum impact force of 577 kips corresponds to an impact velocity 
of 20.6 mph.  In other words, the present methodology calculates a puncture velocity of slightly 
less than 21 mph for Case 2. 
 
This same procedure can be repeated for the other cases involving bare tank car heads.  Table 
5 lists the puncture velocities calculated from combining the finite element and lumped-mass 
analyses with the maximum strain failure criterion.  The table also lists the corresponding punc-
ture velocities calculated from applying the semi-empirical approach.  In the cases where the 
outage is 100 percent, the puncture velocities calculated from finite element method are slightly 
higher than those calculated from the semi-empirical approach.  In the cases with 2 percent out-
age, the trend is reversed; the puncture velocities calculated from the semi-empirical approach 
are higher than those from the finite element method.  In general, the predicted puncture veloci-
ties from the present method and the semi-empirical approach are within 20 percent agreement. 
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Figure 34.  Maximum Strain as a Function of Impact Force for Case 2 
 

 
 

Table 5.  Puncture Velocities Calculated from Finite Element Method 
for Bare Tank Car Heads 

 
Case Outage Puncture Velocity (mph) 

  Semi-Empirical 
 Approach 

Finite Element 
Method 

1 2% 17.9 15.5 
2 100% 20.1 20.6 
3 2% 16.5 14.0 
4 100% 15.2 18.1 
5 100% 18.0 19.6 
6 2% 14.6 14.0 

NOTES: 
(1) See Table 1 for structural details corresponding to specific cases.   
(2) Aspect ratio is assumed as ¼.  
(3) Yield strength is assumed as 35 ksi. 
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In the present study, the NIKE finite element code was used to conduct the quasi-static analy-
ses and the DYNA code was used for the dynamic FEA.  Figure 35 compares results of force 
versus indentation obtained from the NIKE and the DYNA codes.  The square symbols repre-
sent shells with an aspect ratio of 1/3; the diamonds represent shells with an aspect ratio of ¼.  
Solid symbols refer to dynamic FE analyses (DYNA), and open symbols refer to the quasi-
static FEA (NIKE).  The figure shows that the quasi-static and dynamic analyses provide similar 
results for force versus indentation behavior. 
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Figure 35.  Comparison between Quasi-Static and Dynamic 
Finite Element Analyses 
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5. DISCUSSION AND SUMMARY 
 
Engineering analyses were presented in this report that relate impact force and indentation.  
Specifically, two methods were described:  (1) an analytical model of a rigid plastic ellipsoidal 
shell subjected to a concentrated load at the center, and (2) finite element models of elastic-
plastic ellipsoidal shells with arbitrary loading (i.e., load applied at the center or off-center).  The 
effect of various parameters on force-deflection behavior was examined by conducting sensitiv-
ity studies on both methods. 
 
Figure 36 illustrates the relative sensitivity of various parameters to indentation at a force level of 
500 kips for the rigid plastic shell model.  From the semi-empirical equations, 500 kips repre-
sents the impact force created from a 128.9-kip ram car colliding with a tank car of equal 
weight at 20 mph.  The baseline parameters are:  aspect ratio of 1/3, flow stress equal to 50 ksi, 
tank diameter equal to 87.5 inches, 0.5-inch shell thickness, and no internal pressure.  Thus, the 
figure shows that for these baseline parameters, the indentation resulting from a 500-kip impact 
force is 21.2 inches.  The figure also shows the range of assumed values for the various parame-
ters that were considered.  Based on these results from the analytical model, the various pa-
rameters are ranked in order of decreasing sensitivity to load deflection behavior as follows: 

• aspect ratio 
• internal pressurization 
• flow stress 
• shell thickness 
• tank diameter 

In other words, aspect ratio has the strongest influence while tank diameter has the weakest ef-
fect on load deflection behavior for this particular model.  Internal pressure and flow stress have 
a strong to moderate effect.  Shell thickness has a moderate effect on indentation.  The effect of 
tank diameter on indentation is weak. 
 
Figure 37 is a similar illustration of indentation sensitivity to various parameters considered in the 
finite element modeling.   The baseline value for yield strength in the FE results is 50 ksi.  Oth-
erwise, the baseline parameters are identical to those defined for the analytical model.  The in-
dentation produced by an impact force of 500 kips, as calculated by the FE analysis for the 
baseline parameters, is 23.2 inches.  Based on the finite element models, the relative ranking of 
parameters is as follows: 

• yield strength 
• aspect ratio 
• impact load location 
• shell thickness 
• tank diameter 
• boundary conditions 
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Figure 36.  Relative Sensitivities of Various Parameters for Analytical Model 
(Indentation at an Impact Force of 500 Kips) 
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Figure 37.  Relative Sensitivities of Various Parameters for Finite Element Model 
(Indentation at an Impact Force of 500 Kips) 
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The finite element method confirms the strong sensitivity of indentation to aspect ratio, previ-
ously demonstrated in the analytical model.  But yield strength is also shown to have a strong 
influence on indentation.  The location of the impact force (off-center versus center impact) and 
shell thickness have a moderate effect.  Tank diameter and boundary conditions have a rela-
tively weak effect on the finite element results for indentation. 
 
Both the analytical and finite element methods indicate that the magnitude of the indentation de-
pends strongly on the shape and depth of the tank car head (i.e., aspect ratio).  The semi-
empirical approach does not explicitly account for this effect.  The methods to determine the 
puncture velocity of tank cars that are described in this report are based strictly on engineering 
mechanics principles.  No empiricism has been included in these analyses. 
 
Normalization of bare tank car head data indicates that the amount of liquid in the tank (outage) 
has an influence on the load deflection behavior of tank car heads.  While the semi-empirical 
approach accounts for the effect of internal pressurization, outage is not explicitly taken into ac-
count.  The effect of internal pressurization on load deflection behavior of ellipsoidal shells was 
examined using the analytical rigid plastic model.  Internal pressure was shown to have less of an 
effect on the load deflection response than indicated by the semi-empirical approach.  Since 
pressurized tanks generally contain liquid, it appears that the semi-empirical equations overesti-
mate the effect of internal pressurization to compensate for excluding the effect of outage.  Fu-
ture work should be conducted to extend the methods presented in this report to include the 
effect of outage since it appears to influence structural behavior and, therefore, puncture veloc-
ity. 
 
Future work should also be conducted to extend the present methods to include the effect of 
tank car head protection.  For example, the finite element method can be adopted to model 
concentric ellipsoidal shells to represent a tank car head protected by a head shield.  The finite 
element model would be used to determine the load deflection behavior of such a structure.  
These results would then be used as input to the dynamic lumped-mass model which would in 
turn calculate the impulsive force characteristic.  Limited test data indicates that the force versus 
time characteristic for tank heads with head shield protection is trapezoidal in shape. Finite ele-
ment modeling of this type can be complicated because slip-lines may be needed when the head 
shield and the tank car head come into contact.  
 
Strain rate effects have not been examined in the present study, but could be incorporated by 
specifying stress-strain data for varying strain rates into the dynamic finite element model.  Such 
data, however, are limited.  Moreover, the effect of strain rate is expected to be small for low 
velocity impacts. 



 50 

REFERENCES 
 
Belport, S.M., 1993: “Evaluation of the Puncture Resistance for Stainless Steel and Carbon 
Steel Tank Heads.”  AAR Report No. P93-114. 
 
Calladine, C.R., 1983: Theory of Shell Structures, Cambridge: London or Cambridge Univer-
sity Press. 
 
Coltman, M., and M. Hazel, 1992: “Chlorine Tank Car Puncture Resistance Evaluation.”  Final 
Report, DOT/FRA/ORD-92/11. 
 
de Oliveria, J.G., and T. Weirzbicki, 1982: “Crushing Analysis of Rotationally Symmetric Plas-
tic Shells.” Journal of Strain Analysis for Engineering Design 17: 229-236. 
 
Jeong, D.Y., Y.H. Tang, and A.B. Perlman, 2001:  “Evaluation of Semi-Empirical Analyses for 
Tank Car Puncture Velocity, Part 1: Correlations with Experimental Data.” Draft Final Report. 
 
Larson, W.G., 1992: “Aluminum/Cold Temperature Tank Car Puncture Resistance Tests:  Data 
Report.” Final Report, DOT/FRA/ORD-92/29. 
 
Lupker, H.A. 1990:  “LPG Rail Tank Car Under Head-On Collision.” International Journal 
of Impact Engineering 9: 359-376. 
 
Phillips, E.A., and L. Olsen, 1972: “Final Phase 05 Report on Tank Car Head Study,” RPI-
AAR Tank Car Safety Research Project, RA-05-17. 
 
Shang, J.C., and J.E. Everett, 1972: “Impact Vulnerability of Tank Car Heads.”  Shock and 
Vibration Bulletin 42, 197-210. 
 
Timoshenko, S., and S. Woinowsky-Krieger, 1959: Theory of Plates and Shells, 2nd Edition, 
New York: McGraw-Hill Book Company. 
 
Timoshenko, S., D.H. Young, and W. Weaver, Jr., 1974: Vibration Problems in Engineer-
ing, 4th Edition, New York: John Wiley & Sons. 



  

 51

APPENDIX A. RIGID PLASTIC DEFORMATION OF AN 
ELLIPSOIDAL SHELL 

 
This appendix presents the derivation of an analytical solution to the rigid plastic deformation of 
an ellipsoidal shell subjected to a concentrated load applied at the center of the shell.  The solu-
tion presented in this appendix represents an extension of previous work on the rigid plastic de-
formation of rotationally symmetric shells of revolution.  Specifically, de Oliveira and Wierzbicki 
(1982) developed an analytical solution for non-pressurized hemispherical shells.  Subsequently, 
Lupker (1990) modified the work of de Oliveira and Wierzbicki to examine the crushing behav-
ior of pressurized hemispherical shells.  In the present work the analytical solution is extended to 
examine the more general case of a pressurized ellipsoidal shell. 
 
The mechanics of the deformation process for rotationally symmetric shells are such that plastic 
deformations are confined to a narrow zone while the remainder of the shell undergoes rigid 
body motion. The zone of plastic deformation is characterized as a toroidal surface which 
moves outward as the applied load increases.   In the present formulation, the deformation 
process for an ellipsoidal shell is assumed to comprise two stages.  In the first stage, the deflec-
tion at the center of the shell is relatively small (on the order of the shell thickness).  Moreover, 
plastic deformation is contained within a circular area at the center of the shell.  As the load level 
increases, the deformation process progresses to a second stage where the zone of plastic de-
formation becomes more widespread.  In this stage, the plastic deformation is contained within 
two plastic-hinge circles that move outward from the center as the load increases. 
 
 
Initial Stage of Deformation Process for an Ellipsoidal Shell 
 
In the initial deformation stage, a small dimple is formed at the center of the ellipsoidal shell 
where the load is applied.  The dimple is bounded by a single plastic-hinge circle.  Referring to 
Figure A1, the radius of the plastic-hinge circle as measured from the vertical axis of revolution 
is: 
 
 x RA = sinθ  (A.1) 
 
where R is the distance from the origin to the plastic hinge and θ is the angle between R and the 
y-axis.  Physically, the angle θ represents the location of the plastic-hinge circle.  For an ellip-
soid: 
 

 R
a b

a b
=

+

2 2

2 2 2 2cos sinθ θ
 (A.2) 
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Figure A1. Schematic of Shell Deformation in its Initial Stage 
 
 
The shape of the undeformed shell is described mathematically as: 
 

 y x b
x
a

for x aU ( ) = − F
HG

I
KJ ≤ ≤1 0

2

 (A.3) 

 
where a is the semi-major axis length of the ellipsoid and b is the semi-minor axis length.  The 
deformed part of the shell is assumed to have a parabolic shape: 
 
 y x A A x A x for x xD A( ) = + + ≤ ≤0 1 2

2 0  (A.4) 
 
where A0, A1, and A2 are unknown constants that are determined by enforcing continuity of 
slopes and deflections for the undeformed and deformed parts of the shell at the plastic hinge. 
These continuity conditions are stated mathematically as follows: 
 
 y x y xU A D A( ) ( )=  
  (A.5) 

 d
dx

y x
d
dx

y xU A D A( ) ( )=  

 
where xA is the location of the plastic-hinge circle, as defined by equation (A.1).  Additionally, 
this formulation assumes that the location of the plastic hinge and the maximum shell deflection 
relative to the origin are the same, or 
 
 y y x RD D A( ) ( ) cos0 = = θ  (A.6) 
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After performing the necessary differentiation and algebra, 
 

 y x R
b
a

x
R

R xD ( ) cos
cos

sin= + F
HG

I
KJ −θ

θ
θ

2

 (A.7) 

 
The deflection at the center of the shell is: 
 
 w b y b RD0 0= − = −( ) cosθ  (A.8) 
 
 
Second Stage of Deformation Process for an Ellipsoidal Shell. 
 
As the load level increases, the zone of plastic deformation becomes more widespread and 
moves away from the center.  Moreover, two plastic hinges are created during this stage of the 
deformation process.  Also, the zone of plastic deformation is contained within these two plas-
tic-hinge circles which are denoted by Points A and C in Figure A2.  Mathematically, the coor-
dinates of these points are defined as follows: 
 

 
x R

y R
A

A

=
=

sin
cos

θ
θ

 (A.9) 

 
and 
 

 
x R r

y y R
C

C A

= −
= =

( )sin
cos

2 θ
θ

 (A.10) 

 
where r is the radius of the toroidal surface between the hinge points (which is to be deter-
mined).  In addition, the coordinates: 
 

 
x R r

y R r
B

B

= −
= −

( )sin
( ) cos

θ
θ

 (A.11) 

 
define the center of the toroid (see Figure A2). 
 
  In this stage, the deformed ellipsoidal shell is assumed to consist of two sections.  One section 
is described as the toroidal rise of the shell between plastic-hinge circles.  Furthermore, this sec-
tion of the deformed shell is assumed to have a parabolic shape, which is expressed mathemati-
cally as function of x by: 
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Figure A2. Schematic of Shell Deformation in its Latter Stage 
 
 
 y x B B x x for x x xD B C A

( ) ( )1
0 2

2= + − ≤ ≤b g  (A.12) 
 
where B0 and B2 are unknown constants and xA, xB, and xC were defined in equations (A.9), 
(A.10), and (A.11), respectively.  The unknown constants are found by matching the deflections 
and slopes of the undeformed and deformed shells at Point A.  After performing the necessary 
differentiation and algebra, 
 

 y x R
b
a

r x R r
r

for x x xD C A
( ) ( ) cos

sin ( ) sin
cos

1
2 2 2 2

2
= + F

HG
I
KJ

− − −R
S|
T|

U
V|
W|

≤ ≤θ
θ θ

θ
 (A.13) 

 
The second part of the deformed shell represents the indentation between the center and the 
inner plastic-hinge circle.  Mathematically, this section is expressed as an ellipse with the same 
aspect ratio as the undeformed shell but with a different semi-major axis length: 
 

 y x Y
b
a

a x for x xD C
( ) ( )2

0 2
2 2 0= − F

HG
I
KJ − ≤ ≤  (A.14) 

 
In this equation, Y0 is the center of the ellipse (representing the inner part of the deformed shell) 
and a2 is the length of the semi-major axis for this ellipse. Moreover, this function represents the 
mirror image of the undeformed shell (which accounts for the negative sign in front of the radical 
term).  The unknown constants, Y0 and a2, are determined by enforcing continuity of slopes and 
deflections of the two functions describing the deformed shell at the inner plastic- hinge circle.  
These conditions are expressed mathematically as: 
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 d
dx

y x
d
dx

y xD C D C
( ) ( )( ) ( )1 2=    

  (A.15) 
 y x y xD C D C

( ) ( )( ) ( )1 2=  
 
From the condition of slope continuity at the inner plastic-hinge circle,  
 

 a
r

R
a2 1 2= −F

HG
I
KJ  (A.16) 

 
From the condition of deflection continuity at Point C, 
 
 Y R r0 2= −b gcosθ  (A.17) 
 
Therefore, 
 

 y x R r b
r

R
x
a

for x xD C
( ) ( ) cos2

2 2

2 1 2 0= − − −F
HG

I
KJ − F

HG
I
KJ ≤ ≤b g θ  (A.18) 

 
 
The deflection at the center of the shell is: 
 

 w b y
r
R

b RD0 0 2 1= − = −F
HG

I
KJ −( ) cosθb g  (A.19) 

 
where r is the radius of the toroidal rise of the deformed shell.  Moreover, r is determined by 
minimizing the collapse load which is described in the following section. 
 
 
Collapse Load 
  
The derivation for the collapse load starts with an energy balance that equates the rate of work 
of external forces to the internal energy dissipated during the deformation process.  The total 
dissipation energy is the sum of three parts which are due to:  (1) a discontinuous velocity field 
at the plastic-hinge circles, (2) a continuous deformation field in the shell between them, and (3) 
the work done against internal pressurization.  Mathematically, the energy balance is expressed 
as: 
 
 & & & &E E E E= + +1 2 3  (A.20) 
 
The rate of work of external loading is given as: 
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 & sinE F ro= ω θ2  (A.21) 
 
where Fo is the applied load and ω is the angular velocity of the two plastic-hinge circles.  The 
dissipation energy due to the discontinuous velocity field at the plastic hinges contributes: 
 

 & sin ( ) sinE
h

R R ro1

2

2
4

2= + −πσ ω θ θb g  (A.22) 

 
where σo is the flow stress and h is the shell thickness.  The dissipation energy due to the con-
tinuous deformation field between plastic hinges contributes 
 

 & sin
cos

sinE h
b
a

r ro2

2 2

2 1
3

2= ⋅ F
HG

I
KJ ⋅

L
NMM

O
QPP

πσ ω θ
θ

θb g  (A.23) 

 
where the term in the brackets represents the area of the toroidal rise above the instantaneous 
center of rotation passing through Points A and C in Figure A.2.  The work done against inter-
nal pressurization is: 
 
 & & &E p w x dx p w x dx

x

x

xC

C

A

3 10 22= ⋅ ⋅ + ⋅ ⋅z zπ{ }  (A.24) 

 
where p is the internal pressure.  Also, the deflections rates are: 
 
 & sinw r1 2= ω θ  & sinw R x2 = −ω θ  (A.25) 
 
After substitution and integration, 
 

 & sinE p r R Rr r3
2 2 32 1

3
3 6 4= − +L

NM
O
QPπ ω θc h  (A.26) 

 
The fully-plastic moment is defined as: 
 

 M
h

o
o=

σ 2

4
 (A.27) 

 
We also define a dimensionless pressure parameter as: 
 

 P
pa

ho
o

=
2σ

 (A.28) 
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where a is the radius of the tank (which is also the length of the semi-major axis of the unde-
formed ellipse). 
 
When the equations are combined, the collapse load is found as a parametric function of the 
angle θ : 
 

 F M
r
h

b
a

R
r

P
ha

R Rr ro o
o( ) sin

cos
sinθ π θ

θ
θ= F

HG
I
KJ + − + − +F

HG
I
KJ

L
NMM

O
QPP

2 4
3

1 4 2 4
3

2 2
2 2 2  (A.29) 

 
As noted in the previous section, r is an unknown quantity at this point.  The procedure to de-
termine r is described as follows.  The parametric function for the collapse load, equation 
(A.29), is differentiated with respect to r.  The derivative is set equal to zero.  The root of this 
derivative is the solution for r.  A relatively simple closed-form solution for r can be obtained for 
the case where the internal pressure is zero: 
 

 r
a
b

Rh= F
HG

I
KJ

1
2

3
sin

cos
θ

θ  (A.30) 

 
In principle, a closed-form solution for r can be obtained for the case of an internally pressur-
ized shell, but the procedure entails the solution of a cubic polynomial in r.  In practice, the solu-
tion of r for pressurized shells is performed numerically. 
 
 
Transition Between Deformation Stages  
 
The center deflection in the first stage of the deformation process was determined previously as: 
 
 w b R0 = − cosθ  (A.8) 
 
Similarly, the center deflection in the latter stage was found to be: 
 

 w
r
R

b R0 2 1= −F
HG

I
KJ − cosθb g  (A.19) 

 
where r was determined by minimizing the collapse load.  It is interesting to note that equation 
(A.19) reduces to equation (A.8) when R=2r.  Thus, the transition when the deformation pro-
gresses from the formation of a single hinge circle to two hinge circles is assumed to occur at the 
value of θ that satisfies this condition.  In the case of no internal pressure, the angle at which the 
transition occurs is found to be a function of the semi-major and semi-minor axis lengths and the 
shell thickness: 
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 θ trans b
ha h b h a b

h a a b b
= + − −

− −

L
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MM

O
Q
PParccos

( )
2
2

3 9 4 9 2
9

2 2 2 2 2 4

2 2 2 2 6  (A.31) 

 
Mathematically, the initial deformation stage occurs when θ θ≤ trans , and the latter stage occurs 
when θ θ> trans .  A similar expression for the transition angle can be found for the case with 
internal pressurization, but in practice the transition angle is determined numerically. 
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APPENDIX B. DYNAMIC LUMPED-MASS MODEL FOR TANK CAR 
HEAD IMPACT 

 
A dynamic lumped-mass model was developed in the present work to determine the force-time 
history for tank car head impacts.  The model is also used to relate the maximum impact force 
to the initial impact velocity, vo.  As shown in Figure B1, the lumped-mass model comprises two 
masses representing the impacting car and the tank car and a nonlinear spring between them, 
representing the stiffness of the tank car head as it deforms during impact. 

 
 

m1 m2

k(x)
vo

z1 z2

x=z1-z2  
 

Figure B1.  Dynamic Lumped-Mass Model 
 
 
In the formalism developed in this appendix, the spring characteristic is represented mathemati-
cally by a piecewise linear function of impact force, shown schematically in Figure B2 as a 
hardening spring. 
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Figure B2. Piecewise Linear Representation Of Spring Characteristic 
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In the initial linear stiffness range, the equations of motion are: 
 

 
m z k z z

m z k z z
t t

1 1
1

1 1
1

2
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2 2
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1 2
1

1
1 1

0

0
0

&&

&&

( ) ( ) ( )

( ) ( ) ( )

+ − =

+ − =

U
V|
W|

≤ <  (B.1) 

 
where z1 is the displacement of the ram car which has a mass of m1, z2 is the displacement of the 
reaction or tank car which has a mass of m2, k1 is the initial slope of the load-displacement 
curve, and t1 is an unknown time to be determined.  Also, the superscript refers to the system 
response in the initial linear regime of the stiffness curve.  The general solution to these coupled 
differential equations in this regime is: 
 

 
z t A A t A t A t

z t A A t A t A t

1
1

1
1

2
1

3
1

1 4
1

1

2
1

1
1

2
1

3
1

1 4
1

1
1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) cos sin

( ) cos sin

= + + +

= + − −

ω ω
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α
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 (B.2) 

 
where α is defined as the ratio between the mass of the tank car and the mass of the ram car, or 
m2/m1. Also, the circular frequency of oscillation in this regime is defined as: 
 

 ω
α

α1
1 1 2

1 2

1

1

1
=

+
=

+k m m
m m

k
m

( ) ( )
. (B.3) 

 
From this equation, the effective mass of the ram car is defined as: 
 

 m meff =
+1 1
α

α
 (B.4) 

 
The four unknown constants in equations (B.2) are determined by applying the following initial 
conditions: 
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 (B.5) 

 
where vo is the initial impact velocity of the ram car.  After applying these initial conditions to the 
general solution, the motion of the two masses in the initial linear stiffness regime can be ex-
pressed in closed-form as: 
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z t
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Therefore, the compression of the spring between the two masses is equal to: 
 

 x t z t z t
v

to( ) ( ) ( )( ) ( ) ( ) sin1
1

1
2
1

1
1= − =

ω
ω . (B.7) 

 
At this point, two possible cases must be considered to determine t1:  (1) if the impact velocity 
vo is less than δ1ω1, then t1 is the total time of the impact event; or (2) if the impact velocity vo is 
greater than δ1ω1, then plastic deformation of the tank-car head occurs and t1 is the time when 
the next break point in the load deflection curve is reached. 
 
In the first case, t1 is given by: 
 

 t1
1

= π
ω

 (B.8) 

 
Moreover, the overall system response in this case is regarded as linear elastic and is therefore, 
completely described by equations (B.6).  Plastic deformations, however, generally occur when 
the impact velocity is greater than 3 to 4 miles per hour (mph), and t1 is defined by the second 
case. 
 
In the second case, t1 is determined from the following condition: 
 

 v
to

ω
ω δ

1
1 1 1sin =  (B.9) 

 
Solving this equation for t1, 
 

 t
vo

1
1

1 11
=

F
HG

I
KJω

ω δ
arcsin  (B.10) 

 
For time after t1, the stiffness of the tank-car head is governed by k2 and the relevant equations 
of motion for this part of the force-deflection curve are: 
 



 62

 
m z k z z F k

m z k z z F k
t t t

1 1
2

2 1
2

2
2

1 2 1

2 2
2

2 2
2

1
2

1 2 1

1 2

&&
&&

( ) ( ) ( )

( ) ( ) ( )

+ − = − +

+ − = −

U
V|
W|

≤ <
δ

δ
 (B.11) 

The general solution to this set of coupled differential equations is similar in mathematical form to 
the previous case but with complementary terms added to represent the particular solution: 
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where: ω 2
2= k

meff

 (B.13) 

  
The unknown constants in equations (B.12) are determined from continuity of displacements 
and velocities at t1 
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Substituting equations (B.12) into these initial conditions renders: 
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After the unknown constants in equations (B.12) are determined, two possible cases are con-
sidered to determine t2. 
 
The first case occurs when the initial impact velocity is not high enough for the indentation to 
reach the next break point in the spring characteristic curve.  In this case, t2 represents the time 
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when maximum compression of the spring is reached.  Mathematically, this condition is satisfied 
when: 
 
 & ( ) & ( ) & ( )( ) ( ) ( )x t z t z t2

2 1
2

2 2
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2 0= − =  (B.16) 
 
After some algebraic manipulations, it can be found that: 
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The second case is when the initial impact velocity is high enough to reach the next break point 
in the load versus deflection curve.  In this case, t2 is determined from the following condition: 
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After some algebraic manipulations, it can be found that: 
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For times after t2, as defined by equation (B.19), the overall system response requires solution 
of the following set of coupled differential equations governing the next part of the piecewise 
linear load deflection curve: 
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The procedure to solve equations (B.20) is identical to that followed in solving equations (B.1) 
and (B.11).  The general solution to the equations (B.20) is similar to equation (B.12) and also 
contains four unknown constants: 
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where: ω 3
3= k

meff

 (B.22) 

  
The unknown constants are determined from continuity conditions for the displacements and 
velocities at t3, from which: 
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Subsequently, two possible cases must be considered to determine t3 which depends on the 
magnitude of the initial impact velocity.  If the initial velocity is not high enough to reach the next 
break point in the load deflection curve, then: 
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In this case, t3 represents the time when the maximum spring compression is reached. 
 
The other possible case is when the impact velocity is high enough that the next break point in 
the load deflection curve is reached: 
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A pattern in the equations for the system response emerges which can be used to derive succes-
sive incremental solutions.  Mathematically, the general solution to the ith increment step (for 
i>2) is: 
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where: ω i
i

eff

k
m

=  (B.27) 

 
The unknown constants are: 
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When the maximum spring compression is eventually reached, the last incremental solution as-
sumes elastic unloading of the spring along a specified slope kU.  Assuming that t3, as given by 
equation (B.24), is the time when the maximum spring compression is reached, the equations of 
motion for the final incremental solution are: 
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where tf is the time for total impact duration which is to be determined.  Also, 
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The general solution to the equations of motion for unloading of the spring is given by: 
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where: ω U
U

eff

k
m

=  (B.32) 

 
After applying the conditions of continuity of displacements and velocities at t3, the unknown 
constants in equation (B.31) are found to be: 
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Finally, the total time of the impact, tf, is determined from the following condition: 
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from which: 
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